考虑以下优化问题:给定$ n \ times n $矩阵$ a $和$ \ lambda $,最大化$ \ langle a,u \ lambda u^*\ rangle $,其中$ u $ $ u $在unital Group $ \ mathrm上变化{u}(n)$。这个问题试图通过矩阵大约$ a $,其频谱与$ \ lambda $相同,并且通过将$ \ lambda $设置为适当的对角矩阵,可以恢复矩阵近似问题,例如pca和等级$ k $近似。我们研究了在使用用户的私人数据构建矩阵$ a $的设置中,为这种优化问题设计差异化私有算法的问题。我们给出有效的私有算法,在近似误差上带有上和下限。我们的结果统一并改进了有关私人矩阵近似问题的几项先前的作品。他们依靠格拉斯曼尼亚人的包装/覆盖数量范围扩展到应该具有独立利益的单一轨道。
translated by 谷歌翻译
大型预审慎的模型可以私下微调以实现非私有模型的性能。这些结果中的一个共同主题是令人惊讶的观察结果,即高维模型可以实现有利的隐私性权衡。这似乎与差异私有凸学习的模型尺寸依赖性相矛盾,并提出了以下研究问题:差异私人学习的性能何时不会随着模型大小的增加而降低?我们确定投影到子空间上的梯度的幅度是决定性能的关键因素。为了确切地为私人凸学习的特征,我们引入了一个条件,即我们将限制Lipschitz的连续性限制并得出了在其他条件下与维度无关的过多经验和人口风险的界限。我们从经验上表明,在大型语言模型的私人微调中,在本地最佳距离附近评估的梯度主要由一些主要组件控制。这种行为类似于我们在凸面设置中获得尺寸独立界限的条件。我们的理论和经验结果共同为大规模私人微调成功提供了可能的解释。
translated by 谷歌翻译
在最新的应用中,我们需要在自适应流中进行差异隐私,我们研究了在这种情况下矩阵机制的最佳实例化问题。我们证明了矩阵因素化对自适应流的适用性的基本理论结果,并提供了用于计算最佳因素化的无参数固定点算法。我们就机器学习中自然出现的混凝土矩阵实例化了该框架,并通过用户级别的差异私密性来培训用户级别的差异私有模型,从而在联邦学习中产生了显着的问题。
translated by 谷歌翻译
图形神经网络(GNNS)是一种用于建模图形结构化数据的流行技术,该数据通过来自每个节点的本地邻域的信息聚合来计算节点级表示的结构。然而,该聚合意味着增加敏感信息的风险,因为节点可以参与多个节点的推断。这意味着标准隐私保存机器学习技术,例如差异私有随机梯度下降(DP-SGD) - 这被设计用于每个数据点仅参与推理的一个点的情况 - 要么不适用,或导致不准确解决方案。在这项工作中,我们正式定义了使用节点级别隐私学习1层GNN的问题,并提供具有强大差异隐私保证的算法解决方案。即使每个节点都可以参与多个节点的推断,通过采用仔细的敏感性分析和逐个放大技术的非琐碎扩展,我们的方法能够提供具有实心隐私参数的准确解决方案。标准基准测试的实证评估表明,我们的方法确实能够学习准确的隐私保留GNN,同时仍然优于完全忽略图形信息的标准非私有方法。
translated by 谷歌翻译
我们研究了差异私有线性回归的问题,其中每个数据点都是从固定的下高斯样式分布中采样的。我们提出和分析了一个单次迷你批次随机梯度下降法(DP-AMBSSGD),其中每次迭代中的点都在没有替换的情况下进行采样。为DP添加了噪声,但噪声标准偏差是在线估计的。与现有$(\ epsilon,\ delta)$ - 具有子最佳错误界限的DP技术相比,DP-AMBSSGD能够在关键参数(如多维参数)(如多维参数)等方面提供几乎最佳的错误范围$,以及观测值的噪声的标准偏差$ \ sigma $。例如,当对$ d $二维的协变量进行采样时。从正常分布中,然后由于隐私而引起的DP-AMBSSGD的多余误差为$ \ frac {\ sigma^2 d} {n} {n}(1+ \ frac {d} {\ epsilon^2 n})$,即当样本数量$ n = \ omega(d \ log d)$,这是线性回归的标准操作制度时,错误是有意义的。相比之下,在此设置中现有有效方法的错误范围为:$ \ mathcal {o} \ big(\ frac {d^3} {\ epsilon^2 n^2} \ big)$,即使是$ \ sigma = 0 $。也就是说,对于常量的$ \ epsilon $,现有技术需要$ n = \ omega(d \ sqrt {d})$才能提供非平凡的结果。
translated by 谷歌翻译
机器学习模型表现出两个看似矛盾的现象:训练数据记忆和各种遗忘形式。在记忆中,模型过于适合特定的培训示例,并容易受到隐私攻击的影响。在忘记时,最终忘记了在培训初期出现的例子。在这项工作中,我们将这些现象联系起来。我们提出了一种技术,以衡量训练示例的细节在多大程度上``忘记'',从而不易受到他们最近未曾见过的示例的隐私攻击的影响。我们表明,尽管非凸性可以防止在最坏的情况下忘记发生,但标准图像和语音模型在经验上确实会随着时间的流逝而忘记示例。我们将非确定性识别为潜在的解释,表明经过确定性训练的模型不会忘记。我们的结果表明,当使用极大的数据集培训(例如用于预训练模型的示例)时,早期看到的例子可能会观察到隐私益处,而牺牲了后来看到的示例。
translated by 谷歌翻译
在本文中,我们重新审视了私人经验风险最小化(DP-erm)和差异私有随机凸优化(DP-SCO)的问题。我们表明,来自统计物理学(Langevin Exfusion(LD))的经过良好研究的连续时间算法同时为DP-SCO和DP-SCO提供了最佳的隐私/实用性权衡,$ \ epsilon $ -DP和$ $ \ epsilon $ -DP和$ (\ epsilon,\ delta)$ - dp均用于凸和强烈凸损失函数。我们为LD提供新的时间和尺寸独立统一稳定性,并使用我们为$ \ epsilon $ -DP提供相应的最佳超额人口风险保证。 $ \ epsilon $ -DP的DP-SCO保证的一个重要属性是,它们将非私人最佳界限匹配为$ \ epsilon \与\ infty $。在此过程中,我们提供了各种技术工具,这些工具可能引起独立的关注:i)在两个相邻数据集上运行损失功能时,一个新的r \'enyi Divergence绑定了LD,ii)最后一个过多的经验风险范围迭代LD,类似于Shamir和Zhang的嘈杂随机梯度下降(SGD)和iii)的LD,对LD进行了两期多余的风险分析,其中第一阶段是当扩散在任何合理意义上都没有在任何合理意义上融合到固定分布时,在第二阶段扩散已收敛到吉布斯分布的变体。我们的普遍性结果至关重要地依赖于LD的动力学。当它融合到固定分布时,我们获得了$ \ epsilon $ -DP的最佳界限。当它仅在很短的时间内运行$ \ propto 1/p $时,我们在$(\ epsilon,\ delta)$ -DP下获得最佳界限。在这里,$ p $是模型空间的维度。
translated by 谷歌翻译
我们重新审视使​​用公共数据来改善差异私有(DP)模型培训的隐私/实用权折衷的问题。在这里,公共数据是指没有隐私问题的辅助数据集。我们考虑与私人培训数据相同的分发的公共数据。对于凸损失,我们表明镜子血清的变体提供了与模型的维度($ p $)的人口风险保证。具体地,我们将镜像血液应用于由公共数据生成的丢失作为镜像映射,并使用私有(敏感)数据生成的丢失的DP梯度。为了获得维度独立性,我们需要$ g_q ^ 2 \ leq p $公共数据样本,其中$ g_q $是损失功能各向同性的量度。我们进一步表明,我们的算法具有天然的“噪音稳定性”属性:如果围绕当前迭代公共损失,请以$ V $的方向满足$ \ alpha_v $ -strong凸性,然后使用嘈杂的渐变而不是确切的渐变偏移我们的下一次迭代$ v $ v $比例为$ 1 / alpha_v $(与DP-SGD相比,换档是各向同性的)。在前作品中的类似结果必须使用预处理器矩阵形式的公共数据明确地学习几何图形。我们的方法也适用于非凸损失,因为它不依赖于凸起假设以确保DP保证。我们通过显示线性回归,深度学习基准数据集(Wikitext-2,Cifar-10和Emnist)以及联合学习(StackOverflow)来证明我们的算法的经验效果。我们表明,我们的算法不仅显着改善了传统的DP-SGD和DP-FedAVG,它没有访问公共数据,而且还可以改善DP-SGD和DP-FedAVG对已与公众预先培训的模型数据开始。
translated by 谷歌翻译
我们考虑使用迷你批量梯度进行差异隐私(DP)的培训模型。现有的最先进的差异私有随机梯度下降(DP-SGD)需要通过采样或洗机来获得最佳隐私/准确性/计算权衡的隐私放大。不幸的是,在重要的实际情况下,精确采样和洗牌的精确要求可能很难获得,特别是联邦学习(FL)。我们设计和分析跟随 - 正规的领导者(DP-FTRL)的DP变体,其比较(理论上和经验地)与放大的DP-SGD相比,同时允许更灵活的数据访问模式。DP-FTRL不使用任何形式的隐私放大。该代码可在https://github.com/google-Research/federated/tree/master/dp_ftrl和https://github.com/google-reesearch/dp-ftrl处获得。
translated by 谷歌翻译
中毒攻击已成为对机器学习算法的重要安全威胁。已经证明对培训集进行小变化的对手,例如添加特制的数据点,可以损害输出模型的性能。一些更强大的中毒攻击需要全面了解培训数据。这种叶子打开了使用没有完全了解干净训练集的中毒攻击来实现相同的攻击结果的可能性。在这项工作中,我们启动了对上述问题的理论研究。具体而言,对于具有套索的特征选择的情况,我们表明全信息对手(基于培训数据的其余部分的工艺中毒示例)可从未获得培训集的最佳攻击者提供了更强的最佳攻击者数据分发。我们的分离结果表明,数据感知和数据疏忽的两个设置从根本上不同,我们不能希望在这些场景中始终达到相同的攻击或辩护。
translated by 谷歌翻译